Intelligent Measuring Concept for Fleet Monitoring and Continuous Testing

Economic Innovative High Performance

AESAR DataSystems as leading suppliers of decentralized measurement systems, offer to you as competent partners an integrated concept for the instrumentation equipment of fleet vehicles.

Years of experience in the design and manufacture of decentralized measurement systems have resulted in a solid, compatible product range. Outstanding characteristics confirm the open system architecture and secure the seamless high-quality processing of your measuring signals:

- Standard protocols CCP and XCP
- 100% Galvanic Isolation
- Rugged, protected to IP67 class
- Self-start modules
- Upgrades via Flash over CAN
- Wide operating voltage
- Low power consumption

The evolutionary path continues from customer oriented logger systems with varying diagnostic levels to the current and proposed bus systems in the vehicle industry.
Global Data Integrity:

* Worldwide data-exchange with control centers.
* Speed and transparency.
* Interactive intervention in fault situations.

Illustration: Interactive operation from the control center to the vehicle fleet

The core of the measuring concept is the QIC dataLog system, an intelligent, vehicle adapted data logger ideal for long term data collection and/or on-line classification functions.

An inevitable requirement for fleet vehicle monitoring is the quick-start capability of the measuring systems. This is fulfilled by the use of the `LINUX` operating system. Boot times are redundant; the QIC dataLog is immediately ready for use.

The modes of operation: Continuous, Trigger mode over terminal 15 and Wake-up over CAN (Channel4), are standard application conditions supported for fleet monitoring. The supplied software, CCP-Konfig, manages the operating parameters. In addition complete channel lists can be imported.

An internal re-chargeable battery can maintain the QIC dataLog in Standby-Mode, independently from the automotive supply, over a period of up to 7 days. Depending on the requirements, up to 4 modular CAN interfaces can be installed. A mixed structure with interfaces such as CAN, LIN, FlexRay, etc. is also supported. Diagnosis takes place over an external protocol bridge KWP 2000 on the CAN, in CCP or in the future XCP. The selected measurement data is sent over LAN, WLAN or GSM, or onto re-writable media such as SD Memory cards.

The user receives information on operating status from front panel LED's. For remote diagnostics, status messages can be automatically sent by SMS to mobile telephones.
For the signal processing of all the normal variety of measured variables the appropriate measuring amplifiers are available in CAN technology.

The decentralized concept permits the amplifiers to be mounted near the sensors, reducing cable runs. The standard module application temperatures are specified in the range from -40° to +85°C. Several modules in the QIC-Series are also rated for high temperature operation up to +120°C. This flexibility and performance enables modules to be positioned even in exposed areas of the vehicle, normally considered too harsh for instrumentation. A consistent measurement scheme in the vehicle helps ensure a secure project development.

The rapidly changing demands in vehicle development require a continuous, customer orientated approach to system development. We will be pleased to discuss your measurement application in detail with you and advise on a system to meet your requirements.

Please contact us for more information!

CAESAR DataSystems Ltd
2 Faraday Court
Rankine Road
Basingstoke
Hampshire
RG24 8PF

Tel: 01256 332147
Fax: 01256 332274

CaesarData@aol.com
www.caesar.us